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Abstract

If natural convection in a side heated cavity is initiated bythe
impulsive heating of one of the side walls, a thermal plume rises
up the heated wall and forms a thermal intrusion flowing across
the top of the cavity. Experimental data has revealed longitudi-
nal structures in the intrusion. These are thought to be Rayleigh-
Bénard convection rolls aligned with the direction of the intru-
sion flow, formed by the unstable stratification of the intrusion
flow.

A three-dimensional CFD simulation of the flow has revealed
similar structures to those in the experiment, but with shorter
rolls that do not span the full width of the cavity. However, by
modelling the lid of the cavity as a conducting solid, the insta-
bility of the intrusion is increased and the simulated roll struc-
tures occupy the length of the cavity. The roll formation process
is therefore shown to be dependent on the thermal boundary
condition at the top wall.

Introduction

Natural convection in a side heated cavity is a classical heat
transfer problem with a wealth of literature written on the flow
problem. The earliest analysis of the problem is that of Batch-
elor [4] who drew upon the little experimental data available at
that time. This was followed by the first numerical computation
of the flow field by Poots [11], who used a spectral method and
two female assistants as a computational engine. The earliest
models to run on an electronic computer were those by Wilkes
and Churchill [14] and de Vahl Davis [5], both modelling flow
in a two–dimensional square cavity, the former modelling the
problem with a transient code, whilst the latter author modelled
the flow at steady state. The flow was later modelled by de Vahl
Davis and Mallinson in a three-dimensional cavity [7], while the
two dimensional steady state problem is a standard benchmark
for CFD codes [6].

All these early works concentrated on the problem as a steady
state process, with the transient process of imposing a temper-
ature gradient on an initially isothermal and stationary flow be-
ing ignored or used as a numerical device to achieve the steady
state solution. This was rectified by a numerical and scaling
study of the transient flow by Patterson and Imberger [10], fol-
lowed by a series of numerical and experimental studies of the
two-dimensional transient flow by Patterson with Armfield and
Schöpf [9, 3, 12]. Whilst these studies provided an understand-
ing of the structure of the fundamental two-dimensional flowin
the cavity, an experiment by Schöpf and Stiller [13] revealed
an interesting three-dimensional structure of the initialthermal
intrusion. Shadowgraphs taken looking down on the intrusion
flow showed longitudinal structures in the intrusion, whichwere
thought to be rolls formed by a Rayleigh-Bénard instability.

Problem Description

An initially isothermal and motionless fluid is confined to a cav-
ity of square cross section. The left wall is impulsively heated
creating a thermal boundary layer that rises up the heated wall
and intrudes into the cavity along the roof of the cavity. A
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Figure 1: Natural Convection in a square side heated cavity.

schematic of the experiment is shown in figure 1.

For the classical side-heated cavity problem, with adiabatic up-
per and lower boundaries, the flow is characterised by two di-
mensionless groups; the Rayleigh number,

Ra=

gβ∆T l3

να
, (1)

and the Prandtl number,

Pr=
ν
α

, (2)

whereg is the acceleration due to gravity,β the thermal ex-
pansion coefficient,∆T the temperature difference across the
cavity, l the length scale of the cavity (the width or height of
the cavity), andν andα the kinematic viscosity and the thermal
diffusivity respectively.

The time scale has been non-dimensionalised with respect to
the viscosity and the cavity length scale using a viscosity based
Fourier number scaling

τ =

νt

l2
, (3)

while the velocity has been similarly treated,

U =

ul
ν

, (4)

with U being the Fourier velocity.

The effect of the conducting upper boundary of the cavity is
explored in this study. This can be characterised by the ratio of
the timescales of conduction across the wall and convectionof
the intrusion parallel to the wall.

Nw =

νw2

αwl2
(5)

Herew andαw are the thickness and thermal diffucivity of the
conducting boundary, andν and l are as above. AsNw → 0



the effect of conduction in the wall becomes negligable, andthe
boundary behaves as an adiabatic boundary.

The experiments of Patterson and that of Schöpf and Stillerall
used a cavity with a width and height of 0.24m, and a length
in the z axis of 0.5m. The hot and cold side walls were con-
structed of 1mm copper plates, whilst the remaining boundaries
were constructed with 19mm Perspex sheets, allowing the visu-
alisation of the flow within the cavity. Water was used as the
working fluid. The numerical results will be compared to the
Schöpf experiments for which the ambient temperature of the
surroundings and the initial temperature of the cavity and fluid
was approximately 21◦C. The left wall of the cavity was impul-
sively heated by a temperature increase in the range of 1 to 7◦C,
whilst the right wall was maintained at the ambient tempera-
ture. For the case of a temperature increase of∆T = 4.8◦C this
results in a Rayleigh number for the cavity of Ra= 109, and a
Prandtl number of Pr= 6.8, andNw = 0.04.

Numerical Model

The flow was modelled using the in-house SnS code [1, 8],
a Cartesian non-staggered mesh, finite volume solver. The
momentum and temperature equations were discretised using
the QUICK third order upwind differencing scheme, and an
Adams-Bashforth based fractional step scheme [2] was used to
advance the solution in time. The time step was limited to en-
sure that the maximum Courant number at no time exceeded
0.1.

The initial flow field was set to be motionless and isothermal,
with u = v = w = T = 0. The left and right boundaries were
modelled as isothermal walls with a no-slip boundary condition
for velocity. At timet = 0 the leftx boundary was set toT = 1,
while the opposite boundary remained atT = 0, the same tem-
perature as the cavity interior. Two types of boundary condition
were imposed at the upper and lower surfaces. Initial runs were
made with the boundaries being modelled as adiabatic no-slip
walls. However, in order to more correctly model the experi-
mental cavity, the upper and lower boundaries were modified to
be conducting solid walls with a thickness equal to 19/240 of
the cavity width, with an adiabatic boundary condition on the
outer surface of the wall.

Both two- and three dimensional models of the flow were mod-
elled. For the three dimensional problem periodic boundary
conditions were used in thez axis to ensure any disturbances
in this axis were due to instabilities in the flow and not due to
end wall effects.

To trigger three dimensional structures in the flow a random
fluctuation in the range of∆T =±0.1 was added to the left wall
for the initial time step only.

Results and Discussion

Isotherms and streamlines for a two-dimensional flow are
shown in figure 3 for a fluid impulsively heated at the left
boundary, plots being given atτ = 0.51× 10−3, 0.86× 10−3

and 1.2×10−3. At τ = 0.51×10−3 a thermal boundary layer
has formed on the left side of the cavity, which has generated
an intrusion that is starting to cross the cavity below the upper
boundary. For the middle plots, atτ = 0.86×10−3, the intru-
sion has crossed two-thirds of the cavity, whilst for the final
plots, atτ = 1.2×10−3, the intrusion has reached the far wall
and a body of heated fluid lies below the upper boundary across
the full width of the cavity.

Simulated shadowgraphs of the flow looking down on the in-
trusion are shown in figure 2. These were visualised atτ =

0.51× 10−3 and τ = 1.33× 10−3. They should be compared
with the shadowgraphs taken at 30s and 78s in Schöpf and
Stiller [13]. In the first simulated shadowgraph the thermalin-
trusion has only just started to move across the upper boundary
of the cavity. The leading edge of this thermal intrusion can
be seen as a vertical white line in the left side of the image.
The second simulated shadowgraph image shows the flow as
the thermal intrusion reaches the far side of the cavity. A pat-
tern of light and dark regions aligned with the flow direction
have appeared in the intrusion.

A close examination of the isotherms for the modelled flow in
figure 3 atτ = 1.2×10−3 reveals that an unstable thermal gradi-
ent exists between the core of the thermal intrusion and the top
of the cavity. It is thought that the structures seen in the shad-
owgraph arise from Rayleigh–Bénard cells forming with their
axes aligned in the flow direction.

For Rayleigh–Bénard convection between a rigid and a free
boundary, which corresponds to the boundary conditions fora
convection roll in the upper layer of the intrusion, the critical
Rayleigh number is Rac = 1100. If the structures seen in the
experimental images are a result of a Rayleigh–Bénard insta-
bility, the intrusion Rayleigh number, based on the temperature
difference and the vertical extent of the region over which the
intrusion is unstable, must be greater than this critical Rayleigh
number.

Initial calculations for the flow were made using an adiabatic
upper boundary, corresponding toNw = 0. However, the in-
trusion Rayleigh number for these simulations gave a number
much lower than the critical value. It was decided to recalculate
the problem using a more realistic boundary condition for the
upper and lower boundaries, with the upper and lower surfaces
being modelled as conducting slabs of Perspex, having a thick-
ness of 19/240 of the cavity width, givingNw = 0.04. The slabs
had an adiabatic boundary condition on their outer surfaces.

The two-dimensional flow shown in figure 3 is in fact calculated
with the modified boundary condition, and at this scale it is all
but indistinguishable from the flow with the adiabatic bound-
aries. The differences between the two solutions is seen in fig-
ure 4, where the vertical scale has been expanded to reveal the
increased vertical temperature gradient in the simulationwith a
conducting boundary. From inspection the temperature gradi-
ent for the conducting boundary flow is much higher midway
along the intrusion, although both are similar at the intrusion
head. This is borne out in figure 5 which shows the intrusion
Rayleigh number. This is similar for both boundary conditions
at the head of the intrusion. However, in the remainder of the
intrusion the conducting boundary case has a higher intrusion

Figure 2: Simulated shadowgraphs of a thermal intrusion mov-
ing across a cavity. Looking down on the cavity atτ =

0.51×10−3 (left) andτ = 1.33×10−3 (right), for a flow with
Ra= 109.



Figure 3: Numerical two-dimensional model of the intrusion
flow, with streamlines on the left, isotherms on the right, for a
flow with Ra= 109, Pr= 6.7 atτ = 0.51×10−3, 0.86×10−3

and 1.2×10−3.

Rayleigh number than the adiabatic boundary case, with the in-
trusion Rayleigh number exceeding the critical Rayleigh num-
ber Rac = 1100 for most of the extent of the intrusion. In con-
trast, in the simulation made with an adiabatic upper bound-
ary the intrusion Rayleigh number exceeds the critical Rayleigh
number only in the head region.

The three dimensional structure of the intrusion flow is il-
lustrated in figure 8, with isolines ofw plotted at thex =

0.214,0.352,0.616,0.821 and 0.920 sections, along with plots
of the u velocity profile and temperature gradient at each sec-
tion. The double row of velocity contours shown along the up-
per boundary has a similar structure to that of a two dimensional
Rayleigh–Bénard flow. The rolls are a secondary feature of the
flow, with thew velocity in the intrusion having a much lower
value thanu. For the Ra= 109, Pr= 6.7 flow shown in fig-
ure 8w is in the range±0.015 whilst theu velocity reaches a
maximum of 6.6.

The depth of the intrusion at the instant it reaches the far wall of
the cavity is shown in figure 6, for cavity Rayleigh numbers in
the range Ra= 5×107 to Ra= 1.2×109. The intrusion depth
is seen to decrease with increasing Rayleigh number.

The experiments of Schöpf and Stiller [13] revealed that the
wavelengths of the rolls in the thermal intrusion decreasedwith
an increasing cavity Rayleigh number. If the aspect ratio ofthe

Figure 4: Numerical two-dimensional model of the intrusion
flow. Isotherms for a flow with Ra= 109, Pr= 6.7 atτ = 0.51×
10−3, 0.86×10−3 and 1.2×10−3, are shown with an expanded
vertical scale, with only the top 0.18 of the cavity being shown.
Nw = 0 left, Nw = 0.04 right.
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Figure 5: The intrusion Rayleigh number, based on the tem-
perature difference and thickness of the intrusion. The critical
Rayleigh number is approximately Rac = 1100. Plots are given
for N−w = 0 (red) andNw = 0.04 (green), atτ = 0.51×10−3,
0.86×10−3 and 1.2×10−3.

rolls remain constant, then the decreasing thickness of thein-
trusion at higher Rayleigh number will result in this decreased
wavelength. To model this trend, runs were made with the con-
ducting upper boundaries for Rayleigh numbers in the range of
Ra= 5×107 to Ra= 1.2×109. The wavelengths of the rolls
in the modelled flow are shown in figure 7. While both the nu-
merical and experimental wavelengths decrease with increasing
Rayleigh number, they differ in magnitude by up to 50%.

Conclusions

A transient intrusion flow in a three-dimensional side heated
cavity has been modelled using a fractional-step finite vol-
ume code. The CFD code was used to recreate the experi-
ments of Schöpf and Stiller[13] and it successfully captured the
Rayleigh–Bénard rolls that form in the intrusion. The wave-
length of the calculated rolls were in error when compared tothe
experiment, but displayed the same trend of decreasing wave-
length with increasing Rayleigh number. The generation of the
rolls was shown to depend on the upper boundary not being
truly adiabatic in the experiment, with the thermal capacity of
the boundary increasing the temperature gradient across the in-
trusion initiating stronger and more extensive rolls.
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Figure 6: The intrusion depth as the intrusion reaches the right
wall of the cavity, for flows with cavity Rayleigh numbers in the
range of Ra= 5×107 to 1.2×109. Calculated with conducting
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