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Abstract

If natural convection in a side heated cavity is initiatedtbg
impulsive heating of one of the side walls, a thermal pluraesi
up the heated wall and forms a thermal intrusion flowing acros
the top of the cavity. Experimental data has revealed lodgit
nal structures in the intrusion. These are thought to bedigtyd
Bénard convection rolls aligned with the direction of thér-
sion flow, formed by the unstable stratification of the inioas
flow.

A three-dimensional CFD simulation of the flow has revealed
similar structures to those in the experiment, but with &or
rolls that do not span the full width of the cavity. Howevey, b
modelling the lid of the cavity as a conducting solid, theans
bility of the intrusion is increased and the simulated roilis-
tures occupy the length of the cavity. The roll formationqess

is therefore shown to be dependent on the thermal boundary
condition at the top wall.

Introduction

Natural convection in a side heated cavity is a classicat hea
transfer problem with a wealth of literature written on thefl
problem. The earliest analysis of the problem is that of Batc
elor [4] who drew upon the little experimental data avaitaat
that time. This was followed by the first numerical computati

of the flow field by Poots [11], who used a spectral method and
two female assistants as a computational engine. The ®arlie
models to run on an electronic computer were those by Wilkes
and Churchill [14] and de Vahl Davis [5], both modelling flow
in a two—dimensional square cavity, the former modelling th
problem with a transient code, whilst the latter author ntiede

the flow at steady state. The flow was later modelled by de Vahl
Davis and Mallinson in a three-dimensional cavity [7], vettihe

two dimensional steady state problem is a standard ben&hmar
for CFD codes [6].

All these early works concentrated on the problem as a steady
state process, with the transient process of imposing agemp
ature gradient on an initially isothermal and stationaryvftze-

ing ignored or used as a numerical device to achieve theystead
state solution. This was rectified by a numerical and scaling
study of the transient flow by Patterson and Imberger [10], fo
lowed by a series of numerical and experimental studiesef th
two-dimensional transient flow by Patterson with Armfieldlan
Schopf [9, 3, 12]. Whilst these studies provided an undeist

ing of the structure of the fundamental two-dimensional flow
the cavity, an experiment by Schopf and Stiller [13] reeeal
an interesting three-dimensional structure of the initi@rmal
intrusion. Shadowgraphs taken looking down on the intmsio
flow showed longitudinal structures in the intrusion, whioére
thought to be rolls formed by a Rayleigh-Bénard instaypilit

Problem Description

An initially isothermal and motionless fluid is confined toave
ity of square cross section. The left wall is impulsively teea
creating a thermal boundary layer that rises up the heatdld wa
and intrudes into the cavity along the roof of the cavity. A

Figure 1: Natural Convection in a square side heated cavity.

schematic of the experiment is shown in figure 1.

For the classical side-heated cavity problem, with adiahgi-
per and lower boundaries, the flow is characterised by two di-
mensionless groups; the Rayleigh number,

AT I3
Ra= PATE &
va
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whereg is the acceleration due to gravit, the thermal ex-
pansion coefficientAT the temperature difference across the
cavity, | the length scale of the cavity (the width or height of
the cavity), andy anda the kinematic viscosity and the thermal
diffusivity respectively.

The time scale has been non-dimensionalised with respect to
the viscosity and the cavity length scale using a viscosisell
Fourier number scaling
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with U being the Fourier velocity.

The effect of the conducting upper boundary of the cavity is
explored in this study. This can be characterised by the diti
the timescales of conduction across the wall and convection
the intrusion parallel to the wall.
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Herew anday, are the thickness and thermal diffucivity of the
conducting boundary, and and| are as above. ASBl, — 0O



the effect of conduction in the wall becomes negligable, thied
boundary behaves as an adiabatic boundary.

The experiments of Patterson and that of Schopf and Sailler
used a cavity with a width and height of 0.24m, and a length
in the z axis of 0.5m. The hot and cold side walls were con-
structed of 1mm copper plates, whilst the remaining bouedar
were constructed with 19mm Perspex sheets, allowing the vis
alisation of the flow within the cavity. Water was used as the
working fluid. The numerical results will be compared to the
Schopf experiments for which the ambient temperature ef th
surroundings and the initial temperature of the cavity aoiifl
was approximately ZC. The left wall of the cavity was impul-
sively heated by a temperature increase in the range of 1Gp 7
whilst the right wall was maintained at the ambient tempera-
ture. For the case of a temperature increas&Tof= 4.8°C this
results in a Rayleigh number for the cavity of Ral(®, and a
Prandtl number of P£ 6.8, andN,, = 0.04.

Numerical Model

The flow was modelled using the in-house SnS code [1, 8],
a Cartesian non-staggered mesh, finite volume solver. The
momentum and temperature equations were discretised using
the QUICK third order upwind differencing scheme, and an
Adams-Bashforth based fractional step scheme [2] was wsed t
advance the solution in time. The time step was limited to en-
sure that the maximum Courant number at no time exceeded
0.1.

The initial flow field was set to be motionless and isothermal,
withu=v=w=T = 0. The left and right boundaries were
modelled as isothermal walls with a no-slip boundary caadit
for velocity. At timet = 0 the leftx boundary was set td = 1,
while the opposite boundary remainedTat 0, the same tem-
perature as the cavity interior. Two types of boundary ctoni
were imposed at the upper and lower surfaces. Initial rurre we
made with the boundaries being modelled as adiabatic po-sli
walls. However, in order to more correctly model the experi-
mental cavity, the upper and lower boundaries were modiéied t
be conducting solid walls with a thickness equal tg240 of
the cavity width, with an adiabatic boundary condition o th
outer surface of the wall.

Both two- and three dimensional models of the flow were mod-
elled. For the three dimensional problem periodic boundary
conditions were used in theaxis to ensure any disturbances
in this axis were due to instabilities in the flow and not due to
end wall effects.

To trigger three dimensional structures in the flow a random
fluctuation in the range &&T = +0.1 was added to the left wall
for the initial time step only.

Results and Discussion

Isotherms and streamlines for a two-dimensional flow are
shown in figure 3 for a fluid impulsively heated at the left
boundary, plots being given at= 0.51 x 103, 0.86x 103

and 12 x 1073, At T = 0.51x 10~3 a thermal boundary layer
has formed on the left side of the cavity, which has generated
an intrusion that is starting to cross the cavity below thpeaip
boundary. For the middle plots, at= 0.86x 10~3, the intru-
sion has crossed two-thirds of the cavity, whilst for the lfina
plots, att = 1.2 x 1073, the intrusion has reached the far walll
and a body of heated fluid lies below the upper boundary across
the full width of the cavity.

Simulated shadowgraphs of the flow looking down on the in-
trusion are shown in figure2. These were visualised at

0.51x 103 andt = 1.33x 10~3. They should be compared
with the shadowgraphs taken at 30s and 78s in Schopf and
Stiller [13]. In the first simulated shadowgraph the therinal
trusion has only just started to move across the upper boynda
of the cavity. The leading edge of this thermal intrusion can
be seen as a vertical white line in the left side of the image.
The second simulated shadowgraph image shows the flow as
the thermal intrusion reaches the far side of the cavity. A pa
tern of light and dark regions aligned with the flow direction
have appeared in the intrusion.

A close examination of the isotherms for the modelled flow in
figure 3 att = 1.2 x 10~3 reveals that an unstable thermal gradi-
ent exists between the core of the thermal intrusion andae t
of the cavity. It is thought that the structures seen in thedsh
owgraph arise from Rayleigh—Bénard cells forming withithe
axes aligned in the flow direction.

For Rayleigh—Bénard convection between a rigid and a free
boundary, which corresponds to the boundary conditionsfor
convection roll in the upper layer of the intrusion, the icat
Rayleigh number is Ra= 1100. If the structures seen in the
experimental images are a result of a Rayleigh—Bénara@-inst
bility, the intrusion Rayleigh number, based on the temfoeea
difference and the vertical extent of the region over whioh t
intrusion is unstable, must be greater than this criticall&gh
number.

Initial calculations for the flow were made using an adiabati
upper boundary, corresponding ky, = 0. However, the in-
trusion Rayleigh number for these simulations gave a number
much lower than the critical value. It was decided to redaleu

the problem using a more realistic boundary condition far th
upper and lower boundaries, with the upper and lower susface
being modelled as conducting slabs of Perspex, having k-thic
ness of 19240 of the cavity width, givind\y, = 0.04. The slabs
had an adiabatic boundary condition on their outer surfaces

The two-dimensional flow shown in figure 3 is in fact calcuthte
with the modified boundary condition, and at this scale itllis a
but indistinguishable from the flow with the adiabatic bound
aries. The differences between the two solutions is seeg-n fi
ure 4, where the vertical scale has been expanded to reweal th
increased vertical temperature gradient in the simulatith a
conducting boundary. From inspection the temperatureigrad
ent for the conducting boundary flow is much higher midway
along the intrusion, although both are similar at the iribas
head. This is borne out in figure 5 which shows the intrusion
Rayleigh number. This is similar for both boundary condiso

at the head of the intrusion. However, in the remainder of the
intrusion the conducting boundary case has a higher imnusi

Figure 2: Simulated shadowgraphs of a thermal intrusion-mov
ing across a cavity. Looking down on the cavity Bt

0.51x 1073 (left) andt = 1.33x 102 (right), for a flow with
Ra= 10°.




Figure 3: Numerical two-dimensional model of the intrusion
flow, with streamlines on the left, isotherms on the right, do
flow with Ra= 10°, Pr=6.7 atT = 0.51x 103, 0.86x 103
and 12x 1073,

Rayleigh number than the adiabatic boundary case, withmthe i
trusion Rayleigh number exceeding the critical Rayleigmnau
ber Ra = 1100 for most of the extent of the intrusion. In con-
trast, in the simulation made with an adiabatic upper bound-
ary the intrusion Rayleigh number exceeds the critical Bigyl
number only in the head region.

The three dimensional structure of the intrusion flow is il-
lustrated in figure 8, with isolines ofv plotted at thex =
0.214,0.352 0.616,0.821 and ®20 sections, along with plots
of the u velocity profile and temperature gradient at each sec-
tion. The double row of velocity contours shown along the up-
per boundary has a similar structure to that of a two dimeraio
Rayleigh—Bénard flow. The rolls are a secondary featurbef t
flow, with thew velocity in the intrusion having a much lower
value thanu. For the Ra= 10°, Pr= 6.7 flow shown in fig-
ure 8w is in the ranget0.015 whilst theu velocity reaches a
maximum of 66.

The depth of the intrusion at the instant it reaches the férafia
the cavity is shown in figure 6, for cavity Rayleigh numbers in
the range Ra= 5 x 10 to Ra= 1.2 x 10°. The intrusion depth
is seen to decrease with increasing Rayleigh number.

The experiments of Schopf and Stiller [13] revealed that th
wavelengths of the rolls in the thermal intrusion decreasita
an increasing cavity Rayleigh number. If the aspect ratithef

Figure 4. Numerical two-dimensional model of the intrusion
flow. Isotherms for a flow with Ra: 10°, Pr=6.7 att = 0.51 x
103, 0.86x 103 and 12 x 103, are shown with an expanded
vertical scale, with only the top.08 of the cavity being shown.
Nw = O left, Ny = 0.04 right.
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Figure 5: The intrusion Rayleigh number, based on the tem-
perature difference and thickness of the intrusion. Thgcati
Rayleigh number is approximately Ra 1100. Plots are given
for N—w = 0 (red) and\y, = 0.04 (green), at = 0.51x 103,
0.86x 103 and 12x 1073,

rolls remain constant, then the decreasing thickness ointhe
trusion at higher Rayleigh number will result in this decea
wavelength. To model this trend, runs were made with the con-
ducting upper boundaries for Rayleigh numbers in the ratfige o
Ra=5x 10’ to Ra= 1.2 x 10°. The wavelengths of the rolls

in the modelled flow are shown in figure 7. While both the nu-
merical and experimental wavelengths decrease with isorga
Rayleigh number, they differ in magnitude by up to 50%.

Conclusions

A transient intrusion flow in a three-dimensional side hdate
cavity has been modelled using a fractional-step finite vol-
ume code. The CFD code was used to recreate the experi-
ments of Schopf and Stiller[13] and it successfully captithe
Rayleigh—Bénard rolls that form in the intrusion. The wave
length of the calculated rolls were in error when compareati¢o
experiment, but displayed the same trend of decreasing-wave
length with increasing Rayleigh number. The generatiorhef t
rolls was shown to depend on the upper boundary not being
truly adiabatic in the experiment, with the thermal capacit

the boundary increasing the temperature gradient acressth
trusion initiating stronger and more extensive rolls.
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